A Dynamical Model of Genetic Networks for Cell Differentiation

نویسندگان

  • Marco Villani
  • Alessia Barbieri
  • Roberto Serra
چکیده

A mathematical model is proposed which is able to describe the most important features of cell differentiation, without requiring specific detailed assumptions concerning the interactions which drive the phenomenon. On the contrary, cell differentiation is described here as an emergent property of a generic model of the underlying gene regulatory network, and it can therefore be applied to a variety of different organisms. The model points to a peculiar role of cellular noise in differentiation and leads to non trivial predictions which could be subject to experimental testing. Moreover, a single model proves able to describe several different phenomena observed in various differentiation processes.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Dynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model

Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...

متن کامل

Dynamical Analysis of Yeast Cell Cycle Using a Stochastic Markov Model

Introduction: The cell cycle network is responsible of control, growth and proliferation of cells. The relationship between the cell cycle network and cancer emergence, and the complex reciprocal interactions between genes/proteins calls for computational models to analyze this regulatory network. Ample experimental data confirm the existence of random behaviors in the interactions between gene...

متن کامل

Load-Frequency Control: a GA based Bayesian Networks Multi-agent System

Bayesian Networks (BN) provides a robust probabilistic method of reasoning under uncertainty. They have been successfully applied in a variety of real-world tasks but they have received little attention in the area of load-frequency control (LFC). In practice, LFC systems use proportional-integral controllers. However since these controllers are designed using a linear model, the nonlinearities...

متن کامل

Dynamical models of genetic regulatory networks

It is shown that a simplified model of genetic regulatory networks, aimed at the study of their generic properties, can shed light on some important biological phenomena. Two cases are analyzed, namely perturbations in gene expression induced in an organism by the knock-out of selected genes, and cell differentiation. The role of simplified models in biology is discussed.

متن کامل

Laminin matrix promotes hepatogenic terminal differentiation of human bone marrow mesenchymal stem cells

Objective(s):The application of stem cells holds great promises in cell transplants. Considering the lack of optimal in vitro model for hepatogenic differentiation, this study was designed to examine the effects of laminin matrix on the improvement of in vitro differentiation of human bone marrow mesenchymal stem cells (hBM-MSC) into the more functional hepatocyte-like cells. Materials and Met...

متن کامل

PROJECTED DYNAMICAL SYSTEMS AND OPTIMIZATION PROBLEMS

We establish a relationship between general constrained pseudoconvex optimization problems and globally projected dynamical systems. A corresponding novel neural network model, which is globally convergent and stable in the sense of Lyapunov, is proposed. Both theoretical and numerical approaches are considered. Numerical simulations for three constrained nonlinear optimization problems a...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2011